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This paper deals with analytical solution of steady-state heat transfer for laminar, two-dimensional and
rarefied gas flow in an infinite microtube subjected to mixed boundary conditions. To account for the
slip-flow characteristics of microscale heat transfer, temperature jump condition at the wall has been
incorporated in the model while the fluid velocity is assumed to be constant (slug flow). The energy
equation in the thermal entrance region has been solved by the method of separation of variables. The
solution yields closed form expressions for bulk-mean temperature and Nusselt number in terms of
Knudsen number and Peclet number.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

The trend of miniaturization of electronic systems requires
effective cooling from a relatively small surface area and thus requires
efficient thermal control methods. Devices having dimensions of the
order of micrometers are being developed for cooling of integrated
circuits, biochemical applications, micro-electromechanical systems
and optoelectronics. Hence, the development of efficient cooling
techniques associated with microelectronic devices is one of the
important contemporary applications of microscale heat transfer.
This imperative requirement has initiated an extensive research in
microchannel/microtube cooling. A number of analytic solutions
have been reported in the literature for predicting the flow and
temperature of the coolant, which is essential for thermal design of
microdevices.

In case of gaseous flow in a microtube or microchannel, the
mean free path of gas molecules becomes comparable to the
characteristic length of the system. Under such circumstances,
the no-slip boundary conditions become no longer valid so that
velocity slip and temperature jump conditions on the wall need to
be considered. The incorporation of slip boundary condition is also
essential if the fluid is at low pressure. The rarefaction effect of gas
is generally represented by Knudsen number, Kn, which is defined
as the ratio of molecular mean free path to characteristic length of
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the flow geometry. Continuum equations are applicable for Kn / 0,
while kinetic theory is valid for Kn / N (free molecular flow). The
flow regime, in which the Knudsen number ranges from 10�3 to
10�1, is termed as ‘‘slip-flow’’. Since the slip-flow regime nearly
behaves as that of a continuum regime, the heat transfer
phenomena in the slip-flow regime can be safely modeled using
continuum equations together with slip-flow boundary conditions
[1].

In a conventional Graetz problem the flow is considered to be
hydrodynamically fully developed but thermally developing and,
viscous dissipation and axial conduction are neglected. Also, the
fully-developed velocity profile used in the energy equation is
considered to be parabolic. The Graetz problem has subsequently
been extended by many investigators so as to include axial
conduction and viscous dissipation in tube/channel geometries.
The extended Graetz problem in the slip-flow regime has also been
investigated by several researchers in microchannels [2–7] and in
microtubes [8–14]. The analytical methods commonly adopted are
separation of variables, integral transform technique and direct
simulation Monte-Carlo (DSMC) technique.

Using the method of separation of variables, the effect of axial
conduction together with viscous dissipation for thermally devel-
oping flow was studied by Jeong and Jeong [2] in a microchannel
and by Jeong and Jeong [12] in a microtube. Hadjiconstantinou and
Simek [3] solved the constant-wall-temperature heat transfer
characteristics of a model gaseous flow in micro and nano channels
by the DSMC technique. Yu and Ameel [4] applied a modified
generalized integral transform technique to solve the energy
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Fig. 1. Physical geometry of the infinite microtube.

Nomenclature

cp specific heat
Dh hydraulic diameter, Dh¼ 2R0

Ft thermal accommodation coefficient
h heat transfer coefficient
J0, J1 Bessel functions
k thermal conductivity
Kn Knudsen number, Kn ¼ l=Dh
Nu Nusselt number, Nu¼ hDh/k
Pe Peclet number, Pe¼ rcpUR0/k
Pr Prandtl number, Pr¼ mcp/k
R0 radius of the tube
s half of Peclet number, s¼ Pe/2
T temperature
U constant fluid velocity

R,Z physical coordinates
r, z dimensionless coordinates
b eigen values
g specific heat ratio
l molecular mean free path, eigen values
m dynamic viscosity
r density
q dimensionless temperature, q ¼ ðT � TwÞ=ðT0 � TwÞ

Subscripts
0 inlet condition
A isothermal zone
B adiabatic zone
b bulk-mean values
w wall condition
N fully-developed
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equation for the slip-flow regime in a rectangular microchannel.
Tunc and Bayazitoglu studied the slip-flow heat transfer in micro-
channels [5] and in microtubes [11] for both uniform temperature
and uniform heat flux boundary conditions, by the use of the
integral transform technique. The effects of rarefaction and surface
accommodation coefficient on slip-flow heat transfer were studied
by Chen [6] for a microchannel and by Larrode et al. [10] for
a microtube. Aydin and Avci obtained an analytical solution to
laminar forced convection in a microchannel [7] and in a microtube
[13,14] for the slip-flow regime under constant wall temperature
and constant wall heat flux boundary conditions, considering the
viscous dissipation effect. Barron et al. [8] extended the Graetz
problem to slip-flow regime for constant wall temperature condi-
tion and solved the energy equation by power series method.
Ameel et al. [9] also employed similar solution method to solve the
problem of gaseous slip-flow in microtubes with constant heat flux
boundary condition.

In the slug flow model, it is assumed that the velocity of the fluid
is uniform across any cross-section of the tube perpendicular to the
axis of the tube and there is no boundary layer adjacent to the inner
wall of the pipe. The slug flow heat transfer problem in a semi-
infinite tube was solved by Golos [15] by the use of Laplace trans-
formation assuming a constant heat transfer coefficient. Using
Laplace transform method and Galerkin’s technique, the above
problem was also solved by Tyagi and Nigam [16]. The slug flow
forced convection with viscous dissipation was studied by Barletta
and Zanchini [17] assuming constant heat transfer coefficient and
by Barletta [18] considering a constant heat flux boundary condi-
tion. The temperature field and the local Nusselt number were
determined analytically by the Laplace transform method. Based on
principles of first law of thermodynamics Nield and Lage [19]
showed that, in case of slug flow, the value of the Nusselt number is
not affected by finite axial conduction, either for uniform heat flux
or isothermal boundary conditions. However, when the velocity
varies along the transverse coordinate, the situation will be other-
wise. Recently Haji-Sheikh et al. [20,21] solved the steady state
conduction of heat from a wall to a fluid moving at a constant
velocity by an integral transform technique. Although the problem
appears to be a classical heat conduction problem, it is also valid for
the slug flow heat transfer in an infinite tube/channel with a step
change in wall temperature at the origin. Minkowycz and Haji-
Sheikh [22] also studied a similar problem in both parallel-plate
and circular ducts, and obtained asymptotic solutions for wall heat
flux and bulk temperature near the thermal entrance location.

The slug flow problem is appropriate to a porous medium when
Darcy’s law is valid and also applicable for the hydrodynamically
developing flow of a low Prandtl number fluid. The objectives of the
present study are to investigate the two-dimensional forced
convection for gaseous slip-flow in an infinite microtube with
mixed boundary conditions. The velocity profile is assumed to be
uniform along the radius of the tube. The energy equation has been
solved by the method of separation of variables. Closed form
solutions for bulk-mean temperature and Nusselt number are
obtained in terms of Knudsen number, Peclet number and ther-
mophysical properties of the fluid. The solution has been validated
by comparing the results of fully-developed Nusselt numbers with
those of macroscale case, by setting Kn¼ 0.
2. Mathematical model

In this study, the conventional slug flow problem in a circular tube
is extended to include the microscale characteristics as well as the
axial conduction effect. The analysis is based on steady, laminar, slug
flow of an viscous fluid in an infinite circular tube subjected to mixed
boundary conditions. The upstream part of the tube (from Z¼�N to
Z¼ 0) is assumed to be insulated, while its downstream part (from
Z¼ 0 to Z¼N) is maintained at a constant temperature Tw (Fig. 1).
The incompressible fluid with constant properties enters the tube at
Z¼�N, having a uniform temperature T0. The heat flux at the wall
surface is zero for Z< 0, and at the origin, there is a step change in
heat flux due to convection for Z> 0. In the present analysis, the usual
fluid continuum approach with temperature jump condition at the
wall has been considered. The temperature jump is defined as [1]

Ts � Tw ¼ �
2� Ft

Ft

2g

gþ 1
l

Pr
vT
vR

�����R¼R0

(1)

where Ts is temperature of the gas at the wall, Tw the wall
temperature, l the molecular mean free path, R0 the radius of the
tube, Pr the Prandtl number and Ft the thermal accommodation
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coefficient, which depends on the fluid and surface material.
Particularly for air, Ft assumes typical values near unity.

The steady-state energy equation for laminar flow in an infinite
tube (Fig. 1) with uniform velocity distribution (without velocity
jump) and neglecting the compressibility effect (assuming Mach
number< 0.3) [23] can be written as

rcpU
vT
vZ
¼ k

"
1
R

v

vR

�
R

vT
vR

�
þ v2T

vZ2

#
0 < R < R0; �N < Z < N

(2)

Since the tube wall is maintained at a constant temperature Tw in
the downstream part (0< Z<N), the fluid exchanges heat with the
tube in this region and, at far downstream, the fluid attains the
value of temperature Tw, equal to the wall temperature. Using
the temperature jump condition at the wall (Eq. (1)) and utilizing
the symmetry of temperature profiles about axis of the tube, the
boundary conditions can be written as

T ¼ Tw �
4gR0

gþ 1
Kn
Pr

vT
vR

at R ¼ R0; 0 < Z < N (3a)

vT
vR
¼ 0 at R ¼ R0; �N < Z < 0 (3b)

vT
vR
¼ 0 at R ¼ 0; �N < Z < N (3c)

T ¼ T0 at Z/�N (3d)

T ¼ Tw at Z/þN (3e)

where, Kn is the Knudsen number. The energy equation (Eq. (2))
and the boundary conditions (Eq. (3)) are then made dimensionless
by defining the following dimensionless variables:

r ¼ R
R0
; z ¼ Z

R0
; q ¼ T � Tw

T0 � Tw
; Pe ¼ rcpUR0

k
(4)

The energy equation after non-dimensionalization becomes

1
r

v

vr

�
r
vq

vr

�
þ v2q

vz2 � Pe
vq

vz
¼ 0 0 < r < 1; �N < z < N (5)

The non-dimensional boundary conditions are

�
4g

gþ 1
Kn
Pr

�
vq

vr
þ q ¼ 0 at r ¼ 1; 0 < z < N (6a)

vq

vr
¼ 0 at r ¼ 1; �N < z < 0 (6b)

vq

vr
¼ 0 at r ¼ 0; �N < z < N (6c)

q ¼ 1 at z/�N (6d)

q ¼ 0 at z/þN (6e)

In Eq. (6a), by setting Kn / 0, the present formulation reduces to that
of a conventional slug flow problem in an infinite tube. The objectives
of the present work is to solve for the temperature field q(r, z) and, to
study the dependence of bulk-mean temperature qb(z) and Nusselt
number Nu(z) on Peclet number (Pe) and Knudsen number (Kn).
3. Analytical solution

The non-dimensional energy equation Eq. (5) and the associated
boundary conditions in Eq. (6) have been solved by the method of
separation of variables. For this purpose, the physical domain is
divided into two regions: the isothermal zone A (0< z<N) and the
adiabatic zone B (�N< z< 0) and, with the cross section at z¼ 0 as
the dividing surface.

Separating the variables in Eq. (5) and using boundary condi-
tions in Eqs. (6a), (6c) and (6e) lead to the following expression for
the temperature distribution of the fluid in region A:

qAðr; zÞ ¼
XN
n¼1

AnJ0ðlnrÞexp
�
� z
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ l2
n

q
� s
��

(7)

In the above equation, An are constants and the eigen values ln

are positive roots of the following transcendental equation

J0ðlÞ �
�

4g

gþ 1
Kn
Pr

�
lJ1ðlÞ ¼ 0 (8)

and, J0 and J1 are Bessel functions of first kind of order zero and one
respectively. Similarly, using boundary conditions in Eqs. (6b)–(6d),
the temperature distribution of the fluid in the region B can be
written as

qBðr; zÞ ¼ 1þ
XN
n¼1

BnJ0ðbnrÞexp
�

z
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ b2
n

q
þ s
��

(9)

where, Bn are constants and the eigen values bn are positive roots of
the following transcendental equation.

J1ðbÞ ¼ 0 (10)

It may be noted that b1¼0 and J0(b1r)¼ 1. The coefficients An and Bn

in Eqs. (7) and (9) are then determined by matching the compati-
bility conditions at the dividing surface between regions A and B.
The compatibility conditions at the interface surface are continuity
of the temperature and the axial heat flux:

qAðr;0Þ ¼ qBðr;0Þ (11a)

vqA

vz

����z¼0
¼ vqB

vz

����z¼0
(11b)

Substituting Eqs. (7) and (9) in Eq. (11) yields

XN
n¼1

AnJ0ðlnrÞ ¼ 1þ
XN
n¼1

BnJ0ðbnrÞ (12)

XN
n¼1

Anð � fnÞJ0ðlnrÞ ¼
XN
n¼1

BngnJ0ðbnrÞ (13)

where, fn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ l2

n

q
� s and gn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ b2

n

q
þ s. Now operatingR 1

0 rJ0ðbmrÞdr, m¼ 1, 2, . on both sides of Eqs. (12) and (13), and by
invoking the orthogonal properties of eigenfunctions, gives

XN
n¼1

An

Z1

0

rJ0ðlnrÞJ0ðbmrÞdr ¼
Z1

0

rJ0ðbmrÞdr þ Bm

Z1

0

rJ2
0ðbmrÞdr

(14)

XN
n¼1

Anð � fnÞ
Z1

0

rJ0ðlnrÞJ0ðbmrÞdr ¼ Bmgm

Z1

0

rJ2
0ðbmrÞdr (15)

From Eq. (15), the value of Bm can be derived as
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XN Z1
Bm ¼ �
n¼1

Anfn
0

rJ0ðlnrÞJ0ðbmrÞdr

gm

Z1

0

rJ2
0ðbmrÞdr

(16)

Now substituting the value of Bm in Eq. (14) and rearranging the
terms, leads to the following system of equations for the constants
An:

XN
n¼1

EmnAn ¼ Fm; m ¼ 1;2;3;. (17)

where,

Emn ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ l2
n

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ b2

m

q �

�
"

lnJ1ðlnÞJ0ðbmÞ � bmJ1ðbmÞJ0ðlnÞ
l2

n � b2
m

#
;

m ¼ 1;2;3;. (18a)

Fm ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ b2
m

q
þ s
�
� J1ðbmÞ

bm
; m ¼ 1;2;3;. (18b)

and, the limiting value of J1(b1)/b1 in Eq. (18b) can be calculated
using the L’ Hospital’s rule.

Limit
b1/0

J1ðb1Þ
b1

¼ 0:5 (18c)

Equation (17) represents a system of infinite number of linear
equations for the infinitely many unknowns An. As a common
practice followed in all series solutions, numerical calculations are
usually carried out by taking only a finite number of terms. So, in
order to solve the system of equations (Eq. (17)) numerically, only
a finite number of equations and terms, say m¼ 1, 2,. N and n¼ 1,
2,. N are considered. This leads to N linear equations with N
unknowns A1, A2, ..AN, which can be expressed as

½E�fAg ¼ fFg (19)

where, [E] is a N�N matrix and, {A} and {F} are N� 1 vectors. The
numerical solutions for these simultaneous algebraic equations are
obtained by an elimination method. After An have been solved, Bm

are computed from Eq. (16):

Bm¼�
2
XN

n¼1

An

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þl2

n

q
�s
�"

lnJ1ðlnÞJ0ðbmÞ�bmJ1ðbmÞJ0ðlnÞ
l2

n�b2
m

#
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2þb2
m

q
þs
�h

J2
0ðbmÞþJ2

1ðbmÞ
i

(20)

It is worth to mention here that, since the eigenfunctions for
regions A and B are both valid over the same fundamental domain
0< r< 1, it is also possible to obtain another set of equations similar
to Eqs. (17) and (18) by operating Eqs. (12) and (13) withR 1

0 rJ0ðlmrÞdr. Although the resultant equations for Emn and Fm so
obtained are seemingly different from Eq. (19), the calculation
reveals that both results are actually the same.
The following integrals involving Bessel function J0 are adopted
from Ref. [24] to evaluate An and Bm:Z1

0

rJ0ðlnrÞJ0ðbmrÞdr ¼ ½lnJ1ðlnÞJ0ðbmÞ � bmJ1ðbmÞJ0ðlnÞ�
l2

n � b2
m

(21a)

Z1

0

rJ0ðlmrÞJ0ðlnrÞdr ¼
(h

J2
0ðlnÞ þ J2

1ðlnÞ
i

2
; if m ¼ n

0; if msn

(21b)

Z1

0

rJ0ðlmrÞdr ¼ J1ðlmÞ
lm

(21c)

The local bulk-mean temperature qb(z) is calculated using the
following expression:

qbðzÞ ¼ 2
Z1

0

qðr; zÞr dr (22)

Utilizing Eqs. (7), (9) and (22), the local bulk-mean temperature
is derived as

qbðzÞ ¼

8>>>>><
>>>>>:

2
PN

n¼1

AnJ1ðlnÞ
ln

exp
�
� z
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2þ l2
n

q
� s
��

if z� 0

1þ2
PN

n¼1

BnJ1ðbnÞ
bn

exp
�

z
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2þb2
n

q
þ s
��

if z� 0

(23)

Finally the local Nusselt number Nu(z), based on bulk-mean
temperature, is calculated using the following expression:

NuðzÞ ¼ hðzÞDh

k
¼
�2vq

vrjr¼1
qb

(24)

Using Eqs. (7), (9), (23) and (24), the local Nusselt number has
been deduced and given by

NuðzÞ ¼

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

XN

n¼1

AnlnJ1ðlnÞexp
�
�z
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2þl2
n

q
� s
��

XN

n¼1

AnJ1ðlnÞ
ln

exp
�
�z
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2þl2
n

q
� s
�� if z>0

2
XN

n¼1

BnbnJ1ðbnÞexp
�

z
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2þb2
n

q
þ s
��

1þ2
XN

n¼1

BnJ1ðbnÞ
bn

exp
�

z
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2þb2
n

q
þ s
�� if z<0

(25)

It may be verified that in Eq. (25), for the insulated wall (z<0),
Nu(z)¼ 0 since J1ðbnÞ ¼ 0, n¼ 1,2,3, ..N from Eq. (10). Moreover,
imposition of the continuity conditions of temperature and axial
temperature gradient at the interface renders the bulk-mean
temperature to be continuous at z¼ 0 in Eq. (23). Nevertheless,
Nusselt number in Eq. (25) is still discontinuous at z¼ 0 because it
involves normal temperature gradient.
4. Results and discussion

All calculations have been carried out with specific heat ratio
g¼ 1.4 and Prandtl number Pr¼ 0.7, which are the typical property



Fig. 2. Surface temperature distribution at the interface for different Peclet numbers
with Kn¼ 0.01.
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values of air. The values of Knudsen number Kn is varied between
0.001 and 0.1, which are the applicability limits of the slip-flow
regime and Peclet number Pe is varied between 0.1 and 100. In the
present formulation, the fluid temperature is so normalized that it
varies from unity at inlet to zero at outlet. Hence the present
analysis depicts the cooling of a hot fluid i.e. tube wall temperature
is less than inlet temperature of the fluid and, accordingly, the
results are interpreted. The eigen values ln and bn in Eqs. (8) and
(10) are estimated numerically using the Newton–Raphson method
[25]. The first ten eigen values in Eq. (8) for different Knudsen
numbers are tabulated in Table 1. The linear system of equations in
Eq. (19) has been solved by the Gauss elimination method with
equilibration, partial pivoting and iterative improvement [25].
Because of the step-change in normal temperature gradient (vq/vr)
at the triple interface (z¼ 0, r¼ 1), the discontinuity of the surface
heat flux causes a slow convergence of the series for small Knudsen
numbers. In the present calculations, 600 terms in the series are
found to be adequate to retain the accuracy of the solution. It can be
shown from Eq. (25) that, for z > 0, the fully-developed Nusselt
number NuN is equal to l2

1. To check the correctness of the solution
obtained herewith, calculations have also done for the macroscale
case, by setting Kn¼ 0. For Kn¼ 0 with isothermal wall condition,
NuN ¼ 5.783, which is the expected value found in literature [26].

The distribution of surface temperature of the fluid is shown in
Fig. 2, for different Peclet numbers with Kn¼ 0.01. It can be
observed that the interface fluid temperature i.e. q(1,0) as well as
the temperature gradient at the interface (vq(1,0)/vz) increase with
increase in Peclet number. With constant fluid properties and fixed
tube dimensions, Peclet number represents the fluid velocity. For
the prescribed Kn number, q(1,0) increases with increase in fluid
velocity. This may be due to the fact that a higher velocity of the
fluid allows less time for sufficient cooling to take place, resulting in
a higher value of the interface temperature. The temperature
gradient also increases with increase in Peclet number. This reveals
the fact that at higher velocities, the axial conduction as well as
axial convection across the interface may be significant. Fig. 3
shows the dependence of q(1,0) on Knudsen number. Here, q(1,0)
increases with increase in Kn number for a given Pe. Since Knudsen
number quantifies the extent of temperature jump at the surface,
a higher Knudsen number means less heat transfer to the cold wall
in the downstream. This reduced heat transfer may cause to
increase q(1,0). The above trends are in obvious accord with what
one would expect on a physical ground: q(1,0) always increases as
Knudsen number increases, reflecting the fact that heat transfer
from the fluid is decreased.

The axial variation of bulk-mean temperature qb(z) is demon-
strated in Fig. 4 for different Pe numbers and in Fig. 5 for different
Kn numbers. In both the cases, qb has a value of unity at the tube
inlet and monotonically decreases longitudinally along the tube.
Beyond the entrance region, the value of qb approaches to zero as
Table 1
First ten eigen values of Eq. (8) with Pr¼ 0.7 and g¼ 1.4.

First ten eigen values of Eq. (8) with Pr¼ 0.7 and g¼ 1.4

l\Kn 0 0.001 0.005 0.01 0.05 0.1

l1 2.40483 2.39682 2.3651 2.32614 2.04901 1.78866
l2 5.52008 5.50171 5.42909 5.34098 4.80331 4.46337
l3 8.65373 8.62494 8.51164 8.37707 7.70389 7.41027
l4 11.79153 11.75231 11.59901 11.42215 10.69639 10.4566
l5 14.93092 14.88127 14.68889 14.4748 13.74138 13.54344
l6 18.07106 18.011 17.78068 17.53481 16.81676 16.64985
l7 21.21164 21.14117 20.87423 20.60204 19.91067 19.76705
l8 24.35247 24.27161 23.96952 23.6762 23.01649 22.89077
l9 27.49348 27.40224 27.06657 26.75684 26.13034 26.01872
l10 30.63461 30.53301 30.1654 29.84346 29.24985 29.14957
the fluid temperature attains the wall temperature at this location.
The dependence of bulk-mean temperature at the interface on Pe
and Kn are shown in Table 2 and plotted in Fig. 6, and it can be
observed that qb(0) always increases with increase in Pe number or
increase in Kn number.

In Fig. 7, the effect of Pe on local Nusselt number is demonstrated
for macrochannels with Kn¼ 0. The curves for the different Pe
numbers eventually merge together and approach the asymptotic
fully-developed value of 5.783. It may also be observed that, in the
entrance region, Nu number increases with increase in Pe, which
substantiates the fact that Reynolds analogy holds good in this
region. Besides, the thermal entrance length increases with
increase in Pe number. The above results are in qualitative agree-
ment with the Bejan’s conjecture [26, pp. 97] based on scale
analysis:

NuðzÞ ¼ hDh

k
f
� z

Pe

	�0:5
(26)

which is valid for both laminar slug flow and Hagen–Poiseuille flow
in the thermally developing region. The variation of local Nusselt
number for Kn¼ 0.01 is shown in Fig. 8. In this case, although the
nature of the graph is similar to those shown in Fig. 7, the fully-
developed Nusselt number attains the asymptotic value of 5.411 for
all values of Pe. A similar trend of results is also reported by Jeong
and Jeong [2,12] for slip-flow heat transfer in a channel with
parabolic velocity profile. In both Figs. 7 and 8, the local Nu number
Fig. 3. Surface temperature distribution at the interface for different Knudsen
numbers with Pe¼ 10.



Fig. 4. Axial variation of bulk-mean temperature for different Peclet numbers with
Kn¼ 0.01.

Fig. 5. Axial variation of bulk-mean temperature for different Knudsen numbers with
Pe¼ 10.

Fig. 6. Variation of bulk-mean temperature at the origin qb(0) with Peclet and Knudsen
numbers.

Fig. 7. Axial variation of local Nusselt number for different Peclet numbers with Kn¼ 0.
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tends to reach infinity at the origin (z¼ 0) for all Pe numbers. This is
because, the thermal boundary layer thickness is zero at z¼ 0 and
thereby the temperature gradient at the wall is infinite at this
location. However, Nu decays rapidly as the thermal boundary layer
develops, until the constant value associated with fully-developed
condition is reached.

Fig. 9 shows the effects of rarefaction, represented by Kn, on the
local Nusselt number along the tube. As discussed above it can be
realized that Nusselt numbers are, in principle, infinite at z¼ 0 and
decays to their asymptotic (fully-developed) values NuN with
increasing z. It is seen that Nusselt number, the representative of
heat transfer, always decreases with increase in Kn and this trend is
in agreement with results reported in [7,11,12]. These results may be
explained by noting that, as the flow departs from the continuum
Table 2
Bulk-mean temperature at the origin, qb(0).

Bulk-mean temperature at the origin, qb(0)

Pe\Kn 0 0.001 0.01 0.1

0.1 0.0252 0.0259 0.0297 0.0496
1.0 0.2236 0.2289 0.2586 0.3946
10.0 0.8136 0.8243 0.8696 0.9572
100.0 0.9803 0.9863 0.9956 0.9994
behavior, a reduction in heat transfer at the surface occurs because
the temperature gradient at the surface becomes smaller due to the
temperature jump. Therefore, as Kn increases, the temperature
gradient at the wall decreases and the decreased temperature
gradient reduces the heat transfer. Finally, in Fig. 10, the fully-
developed Nusselt numbers are illustrated graphically against
Fig. 8. Axial variation of local Nusselt number for different Peclet numbers with
Kn¼ 0.01.



Fig. 9. Axial variation of local Nusselt number for different Knudsen numbers with
Pe¼ 10.

A.K. Satapathy / International Journal of Thermal Sciences 49 (2010) 153–160 159
various Knudsen numbers. For thermally fully-developed flow,
both numerator and denominator of Eq. (24) tend to zero, leading
to a finite value of the Nusselt number. It is observed that the fully-
developed Nusselt number decreases with increase in Kn number,
which are in consistence with Fig. 9. In Fig. 10, the present solution
has been compared with solutions available for Poiseuille flow
without viscous dissipation [11,12]. At Kn¼ 0, the value of NuN is
5.783 for slug flow, while for Poiseuille flow NuN¼ 3.675. However,
as Kn number increases, the Poiseuille profiles become increasingly
flat and, thereby, the difference of NuN values gradually decreases.

Reported literature [27] indicates that, for heat sink applications,
the temperature range normally considered is 20 �C to 70 �C.
Considering air as the coolant, the variation of thermophysical
properties (at atmospheric pressure) from channel inlet to exit are:
Prandtl number: 1% (decrease) and thermal diffusivity: 33%
(increase). Although the variation of Pr is marginal, the variation of
thermal diffusivity (associated with Pe) may not be overlooked, for
which temperature dependent thermal properties need to be
considered in the model. The solution of mixed boundary value
problems by the classical method of separation of variables may not
be convenient since the boundary conditions involve discontinu-
ities. The discontinuity of the surface heat flux at the interface
increases with decease in Knudsen number and results in slow
convergence of the series, which is inherent in a separation of
variables solution. Due to this reason, specialized integral trans-
form methods such as Wiener–Hopf technique [28] may be useful
for solving these problems.
Fig. 10. Variation of fully developed Nusselt number NuN with Knudsen number with
Pr¼ 0.7 and g¼ 1.4.
5. Conclusion

In this study, the conventional slug flow problem in an infinite
tube is extended to include both slip-flow characteristics and axial
conduction effect. The energy equation is solved analytically by the
separation of variables method and, closed form solutions for bulk-
mean temperature and Nusselt number are derived in terms of
Peclet number and Knudsen number. It is concluded that:

� For the hot fluid and cold wall situation, in the thermal
entrance region, the local bulk-mean temperature increases as
Peclet number or Knudsen number increases. Also, the thermal
entrance length increases as Peclet number or Knudsen
number increases. The results will be opposite if the flow
situation is reversed.
� In the thermal entrance region, the local Nusselt number

increases with increase in Peclet number but decreases with
increase in Knudsen number. The fully-developed Nusselt
number decreases with increase in Knudsen number but, for
a fixed value of Knudsen number, it reaches a constant value for
all Peclet numbers.
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